Game of Iron Thrones

Problem Statement :

You and your friends are playing Game of Iron Thrones. When you play the Game of Iron Thrones, you roll n biased dice together. You know how biased the dice are on each face.

Find the probability that you will get at least K 6 's.

Input :

The first line consists of an integer t, the number of test cases. For each test case, the first line consists of two integers n - the number of dice and K - as defined above. The next n lines consists of 6 decimal numbers denoting the probability of getting the corresponding face. (face 1 to 6)

Output:

For each test case, find the probability to get at least K 6's when you roll all the n dice at once. Your solution's absolute or relative error must be strictly less than 10^{\wedge}-2. (i.e. your solution can make mistakes upto 0.01)

Input Constraints :

$1<=t<=100$
$1<=\mathrm{n}<=1000$
$1<=\mathrm{K}<=1000$

Time Limit :

3 seconds

Sample Input :

4

66

000001
00000.50 .5

000001
0000.500 .5

000001

31
0.20 .20 .20 .20 .20
0.20 .20 .20 .20 .20

000001

32
0.20 .20 .20 .20 .20
0.20 .20 .20 .20 .20

000001

21
0.20 .20 .20 .200 .2
0000.50 .250 .25

Sample Output :

0.25

1

0
0.4

Explanation:

Case 1 : There are 6 dice and we need at least 6 sixes. The probability to get 6 in all dice $=1^{*} 0.5^{*} 1^{*} 1^{*} 0.5^{*} 1=0.25$.
Case 2: There are 3 dice and we need exactly one 6 . No matter how many times you throw the dice, you will always get atleast one 6.

Case 3 : There are 3 dice and we need at least two 6 s . For the given biased dice in which two of them never turns 6 the probability will be 0

Case 4 : Note that there can be more than K 6's. The probability in this case would be $0.2^{*} 0.25+0.2^{*}(1-0.25)+(1-$ $0.2)^{*} 0.25=0.4$

Note : Avoid cout for this problem as it will print the result in scientific notation.

