Car with powers

The race track is a straight line with starting point at Track[0] and ending point at Track[n-1]. The car is initially at Track[0].

Track[i]='\#' if the track has a wall at Track[i].
The car can move from Track[i] to Track[i+1] if and only if Track[i+1] is not a wall. The time taken to move from Track[i] to Track[i+1] is 1 unit.

If there is a wall at Track[i+1], you can shoot it from Track[i] if you have enough bullets in the car. Once a bullet is fired, the bullets count will decrease by 1 . The time required to fire a bullet is 0 .

It is also allowed to ride the car off the track. It's allowed to move from Track[i] to offTrack[i], from offTrack[i] to offTrack[i+1] and from offTrack[i] to Track[i] (if Track[i] is not a wall). The time taken for any of these steps is 2 units.

Find the fastest possible time to finish the race. Print "Impossible" if it's impossible to finish the race.
Input:
The first line consists of an integer t, the number of test cases. For each test case, the first line consists of two integers the length of race track n and the number of bullets the car can fire followed by a line with a string representing the Track.

Output:

For each test case, print the expected result as specified in the problem statement.

Input Constraints:

$1<=\mathrm{t}<=100$
$2<=\mathrm{n}<=1000$
0 <= bullets <= 1000
Track[i] $\in\{$ \{'S','E', 'O', '\#'\}
Track[0]='S', Track[n-1]='E'

Sample Input:

10
73
S00000E
22
SE
41
SOOE
81
S0000\#\#E
83
SO\#OO\#OE
72
SO\#O\#\#E
104
S00\#0\#0\#\#E
52
S000E
71
SO\#\#00E
90
S0000\#\#OE

Sample Output:

6
1
3
13
7
12
9
4
12
15

