Chemical X

A chemical is represented by a character between 'a' to 'z'. Professor Utonium has a series of chemicals in n buckets. He wants to perform an experiment with the following steps.

Step 1: Choose any two random positions i and j such that $0<=i<=n-1$ and $0<=j<=n-1$
Step 2: Swap the buckets i and j .
Step 3 (Optional): Go to step1 (This is an optional step. The professor can skip this step)

Step 4: All consecutive buckets containing the same chemical are merged into a single bucket.

Let m be the number of buckets remain after the experiment.
The result of the experiment is a string obtained by writing down the chemicals in each bucket in order from 0 to $\mathrm{m}-1$ inclusive.

The professor is interested in obtaining the smallest string after the experiment. If there are many such strings, find the lexicographically smallest among them.

Input:
The first line consists of an integer t , the number of test cases. For each test case, the first line consists of a string C representing the chemicals in n buckets. ith bucket contains the chemical $\mathrm{C}[\mathrm{i}]$.

Output:

For each test case, find the string that the professor obtains after the experiment.

Input constraints:

$1<=t<=100$
$2<=\mathrm{n}<=100$
'a' <= C $[i]<=~ ' z '$

Sample Input:

3
egce
zbzbaba
ba

Sample Output:

ceg
abz
ab

Explanation of Case \#1:

There are 4 buckets. The buckets initially contain the chemicals in the order e,g,c,e
One of the possible solutions is

- The professor chooses $\mathrm{i}=0$ and $\mathrm{j}=2$.
- The professor swaps C[0] and C[2] --> c,g,e,e
- The professor prefers to go back to step 1
- The professor chooses $\mathrm{i}=1$ and $\mathrm{j}=3$
- The professor swaps $\mathrm{C}[1]$ and $\mathrm{C}[3]$--> $\mathrm{c}, \mathrm{e}, \mathrm{e}, \mathrm{g}$
- The professor chooses to skip step 3
- The professor merges all the consecutive buckets with same chemicals. --> c,e,g

No lexicographically smallest string can be formed other than "ceg"

