## KATHTHI

Kathiresan is initially locked at cell $(0,0)$ in a highly guarded rectangular prison of order RxC. He must reach the gate at (R-1,C-1) in order to escape from the prison. Kathiresan can move from any cell, to any of it's 4 adjacent cells (North, East, West and South). If Kathiresan is currently at ( $\mathrm{x} 1, \mathrm{y} 1$ ), then he can move to ( $\mathrm{x} 2, \mathrm{y} 2$ ) if and only if abs( x 2 $x 1)+\operatorname{abs}(y 2-y 1)==1$ and $0<=x 2<R$ and $0<=y 2<C$

Kathiresan somehow manages to get the map of the prison.
If $\operatorname{map}[x 1][y 1]==\operatorname{map}[x 2][y 2]$ then Kathiresan can move from $(x 1, y 1)$ to $(x 2, y 2)$ without killing any guards.
If $\operatorname{map}[x 1][y 1]!=\operatorname{map}[x 2][y 2]$, then Kathiresan can move from $(x 1, y 1)$ to $(x 2, y 2)$ by killing a guard.

Given the map of the prison, find the minimum number of guards Kathiresan must kill in order to escape from the prison.

## Input:

The first line consists of an integer $t$, the number of test cases. For each test case, the first line consists of two integers $R$ and $C$ representing the order of the rectangular prison followed by $R$ strings representing the map of the rectangular prison.

## Output:

For each test case find the minimum number of guards Kathiresan must kill in order to escape from the prison.

## Input Constraints:

$1<=t<=10$
$2<=R<=1000$
$2<=C<=1000$
'a' <= map[i][j] <= 'z'

## Sample Input:

4

22
aa
aa

23
$a b c$
def

66
akaccc
aaacfc
amdfcc
aokhdd
zyxwdp
zyxwdd
55
abbbc
abacc
aaacc
aefci
cdgdd

## Sample Output:

0

3

2
2

