Bad XOR

Bad XOR | BADXOR

Time Limit: 1s

You are given an array A of N elements. Also you are given another array B of M elements. Any subset $\left(i_{1}, i_{2}, i_{3}, \ldots, i_{p}\right)$ is bad IFF $\left(A i_{1} \oplus A i_{2} \oplus \ldots \oplus A i_{p}\right)$ equals any value of B. \oplus means Bitwise XOR, which can be found with ${ }^{\wedge}$ syntax in popular programming languages. Now your job is to find the number of good subsets. Empty Subset has XOR value of 0 .

Input

The first line of input denotes the number of test cases $T(1<=T<=20)$. The first line of each test case contains two integers N and $\mathrm{M}(0<=\mathrm{N}, \mathrm{M}<=1000)$. The next line contains N integers of the array $A\left(0<=A_{i}<=1000\right)$. The next line contains M integers of the array $B\left(0<=B_{i}<=1000\right)$. You can assume that each element of array B will be unique.

Output

For each case, print the case number and the total numbers of good subsets in a line. As the result can be very big, output it modulo 100000007.

	Sample Input
2	Output for Sample Input
23	Case 1:1
12	Case 2: 0
012	
13	
1	
012	

Problem Setter: Nafis Sadique
Special Thanks: Ahmad Faiyaz

