Buying Integers

Let's assume that you have \mathbf{n} integers, $\mathbf{A}_{\mathbf{1}}, \mathbf{A}_{\mathbf{2}}, \mathbf{A}_{\mathbf{3}} \ldots \mathbf{A}_{\mathbf{n}}$.
Let's define:

- $\mathbf{E}=$ Number of pairs (\mathbf{i}, \mathbf{j}) such that $\mathbf{i}<\mathbf{j}$ and $\left(\mathbf{A}_{\mathbf{i}}+\mathbf{A}_{\mathbf{j}}\right)$ are even.
- $\mathbf{O}=$ Number of pairs (\mathbf{i}, j) such that $\mathbf{i}<j$ and $\left(\mathbf{A}_{\mathbf{i}}+\mathbf{A}_{\mathbf{j}}\right)$ are odd.
- $D=|E-O|$ (That means, $D=(E-O)$ if $(E-O) \geq 0,-(E-O)$ otherwise.)

Unfortunately, you do have \mathbf{n} but those \mathbf{n} integers are lost. You will have to buy them again. Before going to the market, you have decided that you will buy \mathbf{n} integers in such a way that the value of \mathbf{D} will be as small as possible, as you will have to pay \mathbf{D} golden coins to buy them.

Now, you are wondering, what that minimum \mathbf{D} will be. (Let's call it $\mathbf{D}_{\text {min }}$).

Input

First line of the input file will contain the number of test cases, $T \leq 1000000$, followed by T lines, each containing an integer $\mathrm{n}\left(\mathbf{1} \leq \mathrm{n} \leq 10^{9}\right)$.

Output

For each case, print the case number starting from 1 and $\mathbf{D}_{\text {min }}$ for the value of \mathbf{n} in that particular case. See the sample output for exact formatting.

Example

Input:

3
3
4
5

Output:

Case 1: 1
Case 2: 0
Case 3: 2
Warning: Input file is huge, please use faster input and output methods (e.g. printf and scanf in C++).

Problem Setter: Momontho Mashak Monmoy
Special Thanks: Muhammad Ridowan

