Pairwise AND sum

A bitwise AND takes two binary representations of equal length and performs the logical AND operation on each pair of corresponding bits. The result in each position is 1 if the first bit is 1 and the second bit is 1 ; otherwise, the result is 0 . In this, we perform the multiplication of two bits; i.e., $1 \times 0=0$ and $1 \times 1=1$. For example:

0101 (decimal 5)

AND 0011 (decimal 3)

$=0001($ decimal 1$)$

You are given a sequence of \mathbf{N} integer numbers \mathbf{A}. Calculate the sum of $\mathbf{A}_{\mathbf{i}} \mathbf{A N D} \mathbf{A}_{\mathbf{j}}$ for all the pairs (i, j) where $\mathbf{i}<\mathbf{j}$.

The AND operation is the Bitwise AND operation, defined first.

Input:

The first line of the input contains an integer $T(T<=10)$ denoting the number of test cases. Each test case contains total defaulter number $\mathrm{N} . \mathrm{N} \leq 10^{\wedge} 5$.

The second line contains N integer numbers - the sequence $A . A_{i}<=10^{\wedge} 6$.

Output:

For each case, print the case number and find the best place to stand in the line so that you are selected.

Sample:

Input	Output
2	
5	Case 1:9
12345	Case 2:21
6	
123456	

