Sequence

You are given the sequence of all K-digit binary numbers: $0,1, \ldots, 2^{\mathrm{K}}-1$. You need to fully partition the sequence into M chunks. Each chunk must be a consecutive subsequence of the original sequence. Let $S_{i}(1 \leq i \leq M)$ be the total number of 1 's in all numbers in the ith chunk when written in binary, and let S be the maximum of all S_{i}, i.e. the maximum number of 1 's in any chunk. Your goal is to minimize S.

Input

In the first line of input, two numbers, K and $M\left(1 \leq K \leq 100,1 \leq M \leq 100, M \leq 2^{\wedge} K\right)$, are given, separated by a single space character.

Output

In one line of the output, write the minimum S that can be obtained by some split. Write it without leading zeros. The result is not guaranteed to fit in a 64-bit integer.

Example

Input:
34
Output:
4

