Hashing

Consider the hash function $h(y)=a^{*} y+b(\bmod m)$ which maps each integer to some integer between 0 and $m-1$. You are given x, n, c, d and are curious how many of the hash values $h(x), h(x+1), \ldots, h(x+n)$ land in the interval $[c, d]$.

Input

The first line contains a positive integer t, the number of test cases $\left(1 \leq t \leq 10^{\wedge} 5\right)$. t lines then follow, where the ith line gives the values $a, b, x, n, c, d, m, s p a c e-s e p a r a t e d$, for the ith test case. All given values are non-negative. Also, $1 \leq m \leq 10^{15}, c \leq d<m, a, b<m, x+n \leq 10^{15}$, and $a^{*}(x+n)+b$ $\leq 10^{15}$.

Output

For each test case in order output the number of $\mathrm{i}, 0 \leq \mathrm{i} \leq \mathrm{n}$, such that $\mathrm{c} \leq \mathrm{a}^{*}(\mathrm{x}+\mathrm{i})+\mathrm{b}(\bmod \mathrm{m}) \leq \mathrm{d}$ in that test case, followed by a newline.

Example

Input:
2
2313017
1008089

Output:

1
9

