Parity

You are given n binary strings $s_{1} \ldots s_{n}$, each of the same length m. Along with each s_{i} you are given a bit b_{i}. You are also given some nonnegative integer k and want to know whether there exists a subset S of $\{0,1 \ldots m-1\}$ of size at most k such that for each $i=1,2 \ldots n$, the bit b_{i} is the XOR of the bits of s_{i} at the indices in S. The s_{i} are 0 -indexed strings. Recall that the XOR of a set of bits is 1 if the number of bits equal to 1 is odd, else the XOR is 0 (in particular, the XOR of an empty set of bits is 0). For example, if $s_{1}=1010$ and $S=\{0,3\}$, then b_{1} would be 1 (the first bit of s_{1}) XOR'd with 0 (the last bit of s_{1}), which is 1 . Given n, k, and the strings $s_{1} \ldots s_{n}$ and their corresponding b_{i}, find a set S of size at most k which produces the given b_{i}. You should also detect when no such S exists.

Input

The first line contains n and k, space-separated ($1 \leq n \leq 64,0 \leq k \leq 10$). n lines then follow, where the ith line contains s_{i}, followed by a space, then b_{i}. In a given test case all strings s_{i} are of the same length $m(1 \leq m \leq 50)$. k will not be bigger than m.

Output

If no set S of size at most k exists producing the given b_{i}, output -1 followed by a newline. Otherwise, on the first line output the size of a possible S. If the size of that S is not 0 , on the second line, output a space-separated list of the indices in S , followed by a newline. If there exist multiple valid S to be output, you can output any one of your choosing.

Example

Input:

31
1111
0010
0111

Output:

