Parity

You are given n binary strings $s_1 ... s_n$, each of the same length m. Along with each s_i you are given a bit b_i . You are also given some nonnegative integer k and want to know whether there exists a subset S of {0, 1 ... m-1} of size at most k such that for each i = 1, 2 ... n, the bit b_i is the XOR of the bits of s_i at the indices in S. The s_i are 0-indexed strings. Recall that the XOR of a set of bits is 1 if the number of bits equal to 1 is odd, else the XOR is 0 (in particular, the XOR of an empty set of bits is 0). For example, if $s_1 = 1010$ and $S = \{0, 3\}$, then b_1 would be 1 (the first bit of s_1) XOR'd with 0 (the last bit of s_1), which is 1. Given n, k, and the strings $s_1 ... s_n$ and their corresponding b_i , find a set S of size at most k which produces the given b_i . You should also detect when no such S exists.

Input

The first line contains n and k, space-separated $(1 \le n \le 64, 0 \le k \le 10)$. n lines then follow, where the ith line contains s_i , followed by a space, then b_i . In a given test case all strings s_i are of the same length m ($1 \le m \le 50$). k will not be bigger than m.

Output

If no set S of size at most k exists producing the given b_i, output -1 followed by a newline. Otherwise, on the first line output the size of a possible S. If the size of that S is not 0, on the second line, output a space-separated list of the indices in S, followed by a newline. If there exist multiple valid S to be output, you can output any one of your choosing.

Example

Input: 3 1

Output:

1 1