Farmers Cattle

Farmer john owns a single cow and he loves it a lot. The cow has a disease and is going to die. To survive, the cow needs medicine of a particular type each day. Let us say the cow needs medicine[i] to survive the $\mathrm{i}^{\text {th }}$ day. (medicine[i] will be terminated by -1 , which is an unavailable medicine, and the cow has to invariably die that day).

To help the cow, john has decided to buy pastures of some medical value. Farmer sees a twodimensional grid of pastures, each cell having exactly one medical herb. Now he needs to buy a sub-rectangular region of the grid, whose area cannot exceed $\mathbf{A}(\mathbf{A}>1)$. With this region the farmer intends to feed his cow, as long as possible.

Input Format:

The input file consists of multiple testcases.
The first line of each testcase contains three integers, R, C and A.
The second line consists of sequence of integers describing medicine[i]. This list will be terminated by -1 .
The next \mathbf{R} lines contain \mathbf{C} integers each, specifying the medicinal type of the herb in that cell. (1 $<=\mathbf{R}, \mathbf{C}<=200$). All herbs are specified by non negative integers.
Input terminates with a line containing three zeros and must not be processed.

Output Format:

For each testcase print a single line containing 5 integers:

days r1 c1 r2 c2

($1<=\mathrm{r} 1<=\mathrm{r} 2<=\mathrm{R}, 1<=\mathrm{c} 1<=\mathrm{c} 2<=\mathrm{C}$)

- days is the number of days the cow survives. We wish to maximise this.
- If there are more than one solutions print the one with minimal r1.
- If there are more than one solutions still, print the one with minimal c1.
- If there are more than one solutions still, print the one with minimal r2.
- If there are more than one solutions still, print the one with minimal c2.

Sample Input:

346
12301210022 -1
301253
12301005
22322100
346
$2301210022-1$
301253
12301005
22322100
346
12301210022 -1
301253
12301005
221222100

000

Sample Output:

41123
01111
51233

