Amusing Digits

Tyrion Lannister was amused by the interesting properties of digits such as 3 or 9 .
If you consider any multiple of 3 and then sum up its digits, the sum is always divisible by 3 . For example, 843 is a multiple of 3 and $8+4+3=15$ is also multiple of 3 . Similarly, for 9 , any multiple of 9 satisfies the property that the sum of its digits is also divisible by 9 .

But he suddenly realized that this property for 3 or 9 in base 10 may not hold for another base (let say 11).

Inquisitive that he is, he wants to know the number of digits for which this property holds for a particular base non trivially. (For 0 and 1, this property holds trivially and thus can be ignored.)

A base is the number of unique digits, including zero, that is used to represent numbers.
$\mathrm{T}<=10000$
$3<=\mathrm{N}<=100000$

Input

First line contains the number of test cases, \mathbf{T}.
Then follows \mathbf{T} lines each containing an integer \mathbf{N}.

Output

Output consists of \mathbf{T} lines. Each line denotes the number of digits for which the property holds in base \mathbf{N}.

Example

Input:

3
10
20
3

Output:

2
1
1

Explanation

For base 10 , the digits are 3 and 9.
For base 20 , the only digit that satisfies the property is 19.

