The Nth digit

English

Vietnamese

The number $A(K)$ is defined by writing the numbers $1^{\wedge} K, 2^{\wedge} K, 3^{\wedge} K, \ldots$ sucessively in a right to left order.

For example, $A(1)=\ldots 181716151413121110987654321$.
$A(2)=. . .169144121100816449362516941$.
Consider the sum $S=A(1)+A(2)$. The end of S is: ... 350860272513937560350171262.
Given $\mathrm{N}, \mathrm{K} 1, \mathrm{~K} 2$. Your task is to find the N -th digit from the right of $\mathrm{S}=\mathrm{A}(\mathrm{K} 1)+\mathrm{A}(\mathrm{K} 2)$ (the rightmost digit of S is counted as the first digit).

Input

There are 3 sub test cases. Each test case is written in a line containing 3 integers N, K1, K2 (1 \leq $K 1, K 2 \leq 5.1 \leq N \leq 1,000,000,000)$

Output

Print out 3 corresponding answers to the sub test cases.

Grading

In each test case, you will get 5 marks for $3 / 3$ correct answers, 3 marks for $2 / 3$ correct answers, 1 marks for 1 correct answer, and 0 otherwise.

Example

Input

112
312
512
Output
2
2
7

