Minimum Sum

Suppose you have a list of integers, and a move is defined as taking one of the integers from the list and replacing it with its square root, rounded down to the nearest integer.

Given an integer I and an integer k, start with the array $[1,2,3, \ldots, l]$ and find the minimal sum of the array after k moves.

Example

For I = 5 and $\mathrm{k}=2$, the output should be squareRoots $(\mathrm{l}, \mathrm{k})=10$.

We start with [1, 2, 3, 4, 5].
After square rooting 5 to get [1, 2, 3, 4, 2] and then square rooting 3 to get[1, 2, 1, 4, 2], we end up with a sum of 10 .

Constraints:
$1 \leq 1 \leq 10^{4}$
$1 \leq k \leq 10^{4}$
$T=10000$

Input:

The first line contains T the number of test cases followed by $2^{*} \mathrm{~T}$ lines containing I and k .

Output:

For every test case, output one line containing an integer, i.e. the minimal possible sum.

Sample Input:

2

5

2

2327
4895

Sample Output:

