Binary Stirling Numbers

The Stirling number of the second kind $S(n, m)$ stands for the number of ways to partition a set of n things into m nonempty subsets. For example, there are seven ways to split a four-element set into two parts: $\{1,2,3\} \cup\{4\},\{1,2,4\} \cup\{3\},\{1,3,4\} \cup\{2\},\{2,3,4\} \cup\{1\},\{1,2\} \cup\{3,4\},\{1,3\} \cup\{2,4\}$, $\{1,4\} \cup\{2,3\}$.

There is a recurrence which allows you to compute $S(n, m)$ for all m and n.
$S(0,0)=1$,
$S(n, 0)=0$, for $n>0$,
$S(0, m)=0$, for $m>0$,
$S(n, m)=m * S(n-1, m)+S(n-1, m-1)$, for $n, m>0$.
Your task is much "easier". Given integers n and m satisfying $1<=m<=n$, compute the parity of $S(n, m)$, i.e. $S(n, m) \bmod 2$.

For instance, $S(4,2) \bmod 2=1$.

Task

Write a program that:

- reads two positive integers n and m ,
- computes S(n, m) mod 2,
- writes the result.

Input

The first line of the input contains exactly one positive integer d equal to the number of data sets, $1<=\mathrm{d}<=200$. The data sets follow.

Line $i+1$ contains the i-th data set - exactly two integers n_{i} and m_{i} separated by a single space, 1 $<=\mathrm{m}_{\mathrm{i}}<=\mathrm{n}_{\mathrm{i}}<=10^{9}$.

Output

The output should consist of exactly d lines, one line for each data set. Line i, $1<=\mathrm{i}<=\mathrm{d}$, should contain 0 or 1 , the value of $S\left(n_{i}, m_{i}\right) \bmod 2$.

Example

Sample input:

1
42

Sample output:

1

