PLAYING WITH BITS

The problem is very simple.

You are given a even number \mathbf{N} and an integer \mathbf{K} and you have to find the greatest odd number \mathbf{M} less than \mathbf{N} such that the sum of digits in binary representation of \mathbf{M} is atmost \mathbf{K}. Input

For each testcase

You are given an even number \mathbf{N} and an integer \mathbf{K}

Output

For each test case, output the integer \mathbf{M} if it exists, else print $\mathbf{- 1}$

Constraints

$1<=\mathbf{T}<=10^{\wedge} 4$
$2<=\mathbf{N}<=10^{\wedge} 9$
$0<=\mathbf{K}<=30$

Example

Input:
2
102
61
Output:
9
1

Explanation

First case when $N=10 K=2$

Binary representaion of $\mathbf{1 0}$ is 1010 and binary representation of $\mathbf{9}$ is 1001 , hence greatest odd number less than $\mathbf{1 0}$ whose sum of digits in its binary representation is atmost $\mathbf{2}$ is 9 . Hence output is 9

