Mr Phoenix And OR Operation

Mr Phoenix And OR Operation

Mr Phoenix has a sequence of ' n ' non negative integers: A1,A2,A3,...,An. Mr CSI-DTU has invented a function $F(I, r)\{I, r$, are non negative integers such that $1<=1<=r<=n)\}$ and $F(1, r)=A| | A(l+1)|A(l+2)| \ldots \mid A r$. ie bitwise OR of all the elements with indexes from I to r.(both inclusive)

Now, Mr Phoenix has decided to calculate the values of $F(l, r)$ for all I, r such that $1<=1<=r<=n$ and he wants to know how many distinct values are there of $F(I, r)$. Help Mr Phoenix in finding out that count.

Input

First line of input consists of ' T '-number of test cases. First line of each test case consists of ' n '-number of elements of the array and the second line consists of ' n ' numbers .

Output

Print the desired value corresponding to each test case on a single line.

Constraints

$1<=T<=50$
$1<=\mathrm{n}<=10^{\wedge} 5$
$0<=A i<=10^{\wedge} 6$

Sample Input

2
3
120
5
01204

Sample Output

