The Collatz Sequence

An algorithm given by Lothar Collatz produces sequences of integers, and is described as follows:

Step 1: Choose an arbitrary positive integer A as the first item in the sequence.
Step 2: If $A=1$ then stop.
Step 3: If A is even, then replace A by $A / 2$ and go to step 2.
Step 4: If A is odd, then replace A by $3^{*} A+1$ and go to step 2 .

It has been shown that this algorithm will always stop (in step 2) for initial values of A as large as 10^{9}. In this problem we want to determine the length of the sequence that includes all values produced until either the algorithm stops (in step 2).

Input

A number representing $\mathrm{A}(1<=\mathrm{A}<=1,000,000,000)$.

Output

The length of the sequence generated by A .

Example

Input:
10
Output:
6

Explanation of sample input:
10 -> 5 -> 16 -> 8 -> $4->2$-> 1 (the sequence is of length 6)

