Frequent Values

Given a non-decreasing series of integers $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}$ and indices $1<=\mathrm{i}<=\mathrm{j}<=\mathrm{n}$, what is the maximum number of repeated numbers within $a_{i}, a_{i+1}, \ldots, a_{j}$?

Input

Input contains several test cases.
Each case begins with two integers $1<=n, q<=10^{5}$.
Next line contains n integers $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, each one having a size of lower than or equal to 10^{5}. In next q lines, there are queries. Each one contains two integers $1<=\mathrm{i}<=\mathrm{j}<=\mathrm{n}$. Input terminates when n, q are zero.

Output

For each query, print the maximum number of repetitions within numbers $\mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{i}+1}, \ldots, \mathrm{a}_{\mathrm{j}}$.

Example

Input:
103
1133335101010
23
110
510
00
Output:
1
4
3

