Cycles, More Cycles

A m-cycle in a directed graph is defined to be a sequence of vertices $v_{0}-v_{1}-v_{2}-v_{3}-\ldots-v_{m}$ where an edge ($\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}$) exists for each $0<=\mathrm{i}<\mathrm{n}, \mathrm{v}_{\mathrm{i}}!=\mathrm{v}_{\mathrm{j}}$ for all $0<=\mathrm{i}<\mathrm{j}<\mathrm{m}$ and $\mathrm{v}_{\mathrm{m}}=\mathrm{v}_{0}$. For a given graph of n vertices we can count the number of cycles in it. Now you task is a little harder: find the maximum value among all graphs with certain constraints, that is, your graph should contain an edge from either vertex x to y or y to x, but not both.
Assume there are R m-cycles in your output, your solution will be awarded by w * R points, where w is related to n and m . Your score will be the sum of scores of all test cases. Note your source must not be larger than 10000 bytes.

Input

One line containing two blank-separated integers, n and m , where $3<=\mathrm{m}<=\mathrm{n}<=17$.

Output

Adjacent matrix A of the graph you found. Numbers must be separated by spaces. Edge (i, j) exists when and only when $A_{i j}=1$. $A_{i j}+A_{j i}<=1$ and $A_{i i}=0$ for any $0<=i, j<n$, or your solution will be judged as wrong answer.

Example

Input:

33
Output:
001
100
010
Assume $w=0.2$, this solution will get 0.2 * $1=0.2$ points for this case.

