El Dorado

Bruce Force has gone to Las Vegas, the El Dorado for gamblers. He is interested especially in one betting game, where a machine forms a sequence of n numbers by drawing random numbers. Each player should estimate beforehand, how many increasing subsequences of length k will exist in the sequence of numbers.

A subsequence of a sequence a_{1}, \ldots, a_{n} is defined as $a_{i_{1}}, \ldots, a_{i p}$ where $1 \leq i_{1}<i_{2}<\ldots<i_{l} \leq n$. The subsequence is increasing, if $a_{i_{j-1}}<a_{i_{j}}$ for all $1<j \leq 1$.

Bruce doesn't trust the Casino to count the number of increasing subsequences of length k correctly. He has asked you if you can solve this problem for him.

Input

The input contains several test cases. The first line of each test case contains two numbers n and $k(1 \leq k \leq n \leq 100)$, where n is the length of the sequence drawn by the machine, and k is the desired length of the increasing subsequences. The following line contains n pairwise distinct integers $a_{i}\left(-10000 \leq a_{i} \leq 10000\right)$, where a_{i} is the $i^{\text {th }}$ number in the sequence drawn by the machine.

The last test case is followed by a line containing two zeros.

Output

For each test case, print one line with the number of increasing subsequences of length k that the input sequence contains. You may assume that the inputs are chosen in such a way that this number fits into a 64 bit signed integer (in C/C++, you may use the data type "long long", in Java the data type "long").

Example

Input:

105
12345678910
32
321
00
Output:
252
0

