Fibonacci Representation

Zeckendorf's theorem states that every number can be written uniquely as the sum of distinct fibonacci numbers, such that no 2 of the fibonacci numbers are consecutive. Given N, print the Zeckendorf representation of N .

Given a number N, you have to print the Fibonacci numbers that sum upto N, as per the Zeckendorf's theorem.

Input:
The first line consists of an integer T , denoting the number of test cases that follow. Each of the next T lines consist of an integer N .

Output:
Your output should contain T lines. On each line, print the Fibonacci numbers that add upto the corresponding N (in increasing order), as per the Zeckendorf's theorem.

Constraints:
T <= 1000
$1<=N<=100000000\left(10^{\wedge} 8\right)$
Sample Input:
2
10
100

Sample Output:
28
3889

