Discrete Math Problem (shorten)

Warning: This problem looks like, but differs from GCD3 :
GCD3 : ($2^{K}-2$) ---vs--- GCD4 : (2K-2)
Moreover, your challenge will be to shorten your code to get more points.
GCD4 could be harder than GCD3!

Input

The first line of input contains an integer \boldsymbol{T}, the number of test cases.
On each of the next \boldsymbol{T} lines, your are given three integers $\boldsymbol{N}, \boldsymbol{M}$ and \boldsymbol{K} such that:
$N=a+b$
$M=a^{2}+b^{2}-(2 K-2) \times a \times b$
with $a>0, b>0$ and $\operatorname{gcd}(a, b)=1$.

Output

For each test case, you have to print $\operatorname{gcd}(\boldsymbol{N}, \boldsymbol{M})$, the greatest common divisor.

Example

Input:

2
221481114511261694817
10760390663477499

Output:

1
1

Note: For the first trio $a=117651$ and $b=2097160$.
For the second $a=1313$ and $b=106290$.

Constraints

```
0<T<14321
0<N < 10^200
1<M<10^200
0<K<17
```

For your information, my 293B C code get AC in 0.03 s with 1.6 MB of memory print.
Size code limit will be 666B.
Language restrictions are quite the same than in GCD3, and it is justified ;-)
Have fun ;-)

