Matrix Exponentiation

Many problems can be solved with matrix exponentiation. This task can be 'easily' solved with a $\mathrm{O}(\log (\mathrm{N}))$ algorithm. You'll have to work on the constant to get more points. We'll work with a 'small' matrix and constant modulo. This task should help you to try some speed improvements for problems like R Numbers, Grid Tiling, and the great Flibonakki...
You don't need to solve the whole input, just as many cases as you can. Not all, it could be impossible. You will get one point per case.
There will be one input file and the matrix will have a size $\mathbf{W}=18$, unlike in the sample.
For your information, my fastest 3kB-C code got 190000 points, with $23 M B$ of memory usage. (Lot of stuff!)

Input

The first line contains an integer number W : the size of the squared matrix.
The W next lines contains W integers Mij : the coefficients of the matrix, line by line. In each the 838383 next lines there are three integers I, J, N.
You don't have to read the whole input, just as many as you can solve...

Output

For as many test cases you can, on a single line, print the coefficient on the lth line, Jth column of the matrix $\mathrm{M}^{\wedge} \mathrm{N}(\mathrm{M}$ to the power N$)$. As the answer could be a big number, output the answer modulo 1000000007.

Example

Input:

5
328276630
57128289
536663561
4587882420
3522238093
111
152
513
5599
[...]
Output:
32
12795
2714937
764817976

Explanations

For the first case: $\mathrm{M}^{\wedge} 1=$

For the second case: $\mathrm{M}^{\wedge} 2=$

1008995709060650512795
6570865528181191211824
948691956738956014203
12843121135851840016801
1044813416101781251914660
For the third case: $\mathrm{M}^{\wedge} 3=$

20890682282253125966821818343027095
18028092029855162544617813682477165
21120862375941153223922459763026032
23775552551827158979426223293550751
27149372953573194870425458863742082

Constraints

$W=18$
$1 \leq \mathrm{I}, \mathrm{J} \leq \mathrm{W}$
$1 \leq \mathrm{Mij} \leq 10^{\wedge} 9$
$1 \leq \mathrm{N} \leq 10^{\wedge} 18$
Uniform-random input in the range.

Score

As in the example, if you can output the 4 first correct answers, your score will be 4 points. No need to solve all the input, the minimum is 1 ; every solver in 'any' language will be able to check his MATrix-EXponentiation-speed.

