Permutation

A permutation is a sequence of integers $p_{1}, p_{2} \ldots p_{n}$, consisting of n distinct positive integers, each of which doesn't exceed n. Let's denote the i-th element of permutation p as p_{i}. We'll call number n the size of permutation $p_{1}, p_{2} \ldots p_{n}$.

Nickolas adores permutations. He likes some permutations more than the others. He calls such permutations perfect. A perfect permutation is such permutation p that for any $i(1=i=n)$ (n is the permutation size) the following equations hold $p_{p_{i}}=i$ and $p_{i} \neq i$. Nickolas asks you to print any perfect permutation of size n for the given n.

Input

First line will contain number of test case T , followed by T lines.
Each line contains a single integer $n(1 \leq n \leq 100)$ - the permutation size.

Output

If a perfect permutation of size n doesn't exist, print a single integer -1 . Otherwise print n distinct integers from 1 to $n, p_{1}, p_{2} \ldots p_{n}$ - permutation p, that is perfect. Separate printed numbers by a space.

Example

Input:

3
1
2
4

Output:

-1
21
2143

