
Labyrinth
English version Wersja polska

The task requires writing a program able to steer a certain character – a player who is looking for
the labyrinth’s exit. Communication with the system has an interactive character: program is
outputting the commands (marked blue in the description) and receives the information and
statements in return from the system (marked red in the description).

Rules

The labyrinth’s structure. Labyrinth consists of empty fields (marked with ‘.’) and parts of the
walls (‘X’ character). Only one element of external wall that surrounds the whole labyrinth is
marked as an exit (‘E’ character). Player’s position is marked as a plain field (‘O’ character). You
can assume that the walls are made in a very elegant way which means that each element of the
wall is adjacent to no more than 2 other wall elements; the parts of the wall which meet with their
corners, have to have a common neighboring element of the wall on their edges. There is a
complete darkness in the labyrinth. Player does not have a map of the labyrinth.

The beginning of the game. At the begging of the game player is at an unknown empty field
inside the labyrinth. He has a torch with him and a certain amount of dynamite (n>=0), which is
stated by the system’s greeting statement:

You wake up with a headache, completely lost in a dark maze.
In your pockets you find a torch and n stick[s] of dynamite.

Actions allowed. Player is allowed to move around the labyrinth and use the torch or dynamite
giving one of the following commands (to realize the “basic” functionality you can only use the
first two ones):

walk (north|south|east|west) k – it moves the player by k fields in a chosen direction. Each
field that a player crosses should be empty or be an exit from the labyrinth. The return
statement can be:

You are still lost in a dark maze. – if you did not find an exit
Against all odds, you have found the exit. Congratulations! – in case you entered a
field marked ‘E’ (the game is considered to be over – you have completed the task
and are granted victory)

look around – it lights up eight fields surrounding you and returns a proper statement from
the system, for example:
The maze around you looks like this:
X.X
.OX
.XX
look (north|south|east|west) k – this command works very similarly to ‘look around’, but with
a difference that looking to the chosen direction will have a k range (instead of 1). In case
there is a wall that blocks the view in the row or column we have chosen, consecutive fields
will not be displayed. An example return statement for ‘look north 4’ command can look like
that:

file:///SPOJ/problems/PPP07D/english/
file:///SPOJ/problems/PPP07D/polski/

The maze around you looks like this:
.XX
..X
X..
X.X
.OX
.XX
In that case the ‘look north 10’ command would give an identical effect because of the wall
that blocks the view.
use dynamite – this command will replace the eight fields surrounding the player with
empty fields with no side effects for the player (although the number of dynamites he
possesses is decreased by one). The return system’s statement would look like that:
You light up a stick of dynamite.
The explosion knocks you to the ground, but amazingly you survive.

Restrictions. Player cannot give more than 104 commands to the system in one game. You also
have to be really careful about spending your resources: the amount of oxygen used cannot
exceed 107, and crossing one field costs you 10 units of oxygen, using the torch costs you 1 unit
of oxygen for every field you highlight and using the dynamite will cost you 1000 units of oxygen.
If you exceed any of the limits or violate the rules (hitting the wall, using too much dynamite,
giving an incorrect command) the system will output the following statement: STOP. Problem
description. and game is considered to be over.

Input/Output

In one execution of the program we are playing t (t<20) games in different labyrinths. At the
beginning of the game system outputs the t value and then all the games are played one after
each other in a way mentioned earlier.

Program should clear the output buffer after printing each line. It can be done using fflush(stdout)
command or you by setting the proper type of buffering at the beginning of theexecution -
setlinebuf(stdout).

An example of the scenario can be found here.

Test data

Functionality for 0 to 2 points. Labyrinth covers the 50 by 50 board and contains only the
outside wall. None of the labyrinth’s fields is located north or west from the player. The only
instructions you need to use to fulfill those requirements are ‘walk … 1’ and ‘look around’. You
have no dynamite.

Functionality for 2 to 5 points. Labyrinth covers the array 50 by 50 board. The only instructions
you need to use to fulfill those requirements are ‘walk … 1’ and ‘look around’. You have no
dynamite. Basic strategy is described below.

Functionality for 5 to 7 points. Labyrinth covers the 500 by 500 board. The labyrinth’s walls are
made of no more than 500 segments and their summary length does not exceed 2500. The only
instructions you need to use to fulfill those requirements are ‘walk … 1’ and ‘look around’. You

https://www.spoj.com/embed/adrian:ppp07d-example

have no dynamite.

Functionality for 7 to 8 points. Labyrinth covers the 5000 by 5000 board. The labyrinth’s walls
are made of no more than 500 segments and their summary length does not exceed 25000. You
have no dynamite.

Functionality for 8 to 9 points. Labyrinth covers the 50000 by 50000 board. The labyrinth’s
walls are made of no more than 500 segments and their summary length does not exceed
250000. You have no dynamite.

Functionality for 9 to 10 points. Labyrinth covers the 50000 by 50000 board. The labyrinth’s
walls are made of no more than 500 segments and their summary length does not exceed
250000. You have dynamite but only in the amount you really need.

Simple strategy – depth first search (up to 5 points)

DFS:
if (current field is exit) exit the program;
mark the current field as visited;
output 'look around';
read information about the neighborhood;
for each direction from the set {'west', 'north', 'east', 'south'}
if (field in the direction direction was not visited and is not a wall)
{
output 'walk direction 1';
execute recursive DFS;
output 'walk opposed to direction 1';
}

Example strategy – omitting obstacles (up to 10 points)

Pseudocode is less detailed; the outcome depends on the way you implemented it. We arbitrary
choose one direction (for example: north) and try to move that way.

iteratively execute:
if (you can go north) go north;
else
{
try to go around the encountered obstacle.
if (an obstacle cannot be omitted it means the player is trapped inside)
use dynamite.
else put the player at the edge of the obstacle that is farthest to the north
}

Judge

To test your program you can use an arbiter used in the task. You can download a source code
for g++ compiler here (Unix/Linux system or Cygwin for Windows).

Typical execution can look like that (of course in the SPOJ system it occurs very differently)

https://www.spoj.com/content/adrian:ppp07d-judge.cpp
http://www.cygwin.com/

ppp07d-judge input_file tested_program – testing the playing program (outcome on the display)
ppp07d-judge input_file tested_program 2> log_file - testing the playing program (outcome in the
log file)
ppp07d-judge input_file 2> /dev/null – manual game with an arbiter

where: input_file – file with a labyrinth description, tested_program – path to the playing
program‘s executable.

The format of the input file looks like that: first there is t – the number of games. For each game
there is the first line that contains six integers: k - number of segments, x and y – location of the
exit, x and y – location of the player,n – number of available dynamite. Each of the following k
lines contains the description of one segment which is represented by four integers x1 y1 x2 y2
where x1<=x2 and y1<=y2 and at least one of those conditions is an equality. The input file to
generate a labyrinth from the example can be downloaded here.

https://www.spoj.com/content/adrian:ppp07d-exinput

	Labyrinth
	Rules
	Input/Output
	Test data
	Simple strategy – depth first search (up to 5 points)
	Example strategy – omitting obstacles (up to 10 points)
	Judge

