Perfect Composites

Rohil and Mahesh recently attended a class on Prime Numbers. They learnt about a term "Prime Score" which is defined for all $N>1$. For a number $N=p 1^{a} \times p 2^{b} \times p 3^{b} \ldots \times p k^{m}$ where $p 1, p 2, \ldots p k$ are prime factors of N , Prime Score of $\mathrm{N}=\mathrm{a}+\mathrm{b}+\ldots+\mathrm{m}$. While Mahesh was interested only in primes, Rohil thought how about playing around with Composite Numbers. Both started discussing and found out something known as Perfect Composite Numbers. They defined a Composite number N as Perfect Composite if it is divisible by all the factors of its Prime Score. Whoa!! That's a nice discovery both of them have made. Now, they are interested in finding the number of Perfect Composites between A and B (inclusive) having Prime Score K. They want you to write a program for the same.

INPUT SPECIFICATIONS

First line contains a single integer $\mathrm{T}<=10000$, the number of testcases. Each following line contains three integers A, B and $K\left(2<=A<=B<=10^{5}\right.$ and $\left.K>=0\right)$.

OUTPUT SPECIFICATIONS

For each test case, print a single integer - the number of Perfect Composite numbers between A and B (inclusive) having Prime $\mathrm{Score}=\mathrm{K}$.

SAMPLE I/O

INPUT :

5
252
31003
4105
904568
34675

OUTPUT :

