Relative Board

English

Vietnamese

Given a matrix A with dimension $N^{*} N(2 \leq N \leq 1000)$ which contains only 6 types of value: $\{-1,-2$, $0,1,2,3\}$

A is called the relative board of a sequence $T=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$, or T relates to A if:

- $A_{i j}=0: T_{i}=T_{j}$
- $A_{i j}=1: T_{i}<T_{j}$
- $A_{i j}=-1: T_{i}>T_{j}$
- $A_{i j}=2: T_{i} \leq T_{j}$
- $A_{i j}=-2: T_{i} \geq T_{j}$
- $A_{i j}=3: T_{i}$ is not equal to T_{j}

For all $\mathrm{i}, \mathrm{j}: 1<=\mathrm{i}, \mathrm{j}<=\mathrm{N}$
Given the relative board A, find the sequence of positive integers $T=\left(T_{1}, T_{2}, \ldots, T_{n}\right)$ that relates to A such that $\operatorname{Max}(T)$ is as small as possible. Suppose that the sequence T always exists.

Define $\operatorname{Max}(\mathrm{T})=\operatorname{Max}\left(\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{\mathrm{n}}\right)$.

Input

The first line contains an integer N . N lines follow, each line contains N integers that describe the relative board A .

Output

The first line contains $\operatorname{Max}(\mathrm{T})$. The second line contains N separated positive integers $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots$, T_{n}.

Score

Your score $=\operatorname{Max}(T)$.

Example

```
Input:
6
0 1 1 1 2 2
-2 0 1 0 2 2
-2-1 0 3 0 1
-2-2 3 0 1 1
-1-2 0-1 0-1
-1-2-1-1-1 0
```

Output:

123234
-> Score $=4$

