Relative Board

<u>English</u> <u>Vietnamese</u>

Given a matrix A with dimension N*N ($2 \le N \le 1000$) which contains only 6 types of value: {-1, -2, 0, 1, 2, 3}

A is called the relative board of a sequence $T = (T_1, T_2, ..., T_n)$, or T relates to A if:

- $A_{ij} = 0$: $T_i = T_j$
- $A_{ij} = 1 : T_i < T_j$
- $A_{ij} = -1 : T_i > T_j$
- $A_{ij} = 2 : T_i \le T_j$
- $A_{ii} = -2 : T_i \ge T_i$
- $A_{ij} = 3 : T_i$ is not equal to T_j

For all i, j: 1 <= i, j <= N

Given the relative board A, find the sequence of positive integers $T = (T_1, T_2, ..., T_n)$ that relates to A such that Max(T) is as small as possible. Suppose that the sequence T always exists.

Define $Max(T) = Max(T_1, T_2, ..., T_n)$.

Input

The first line contains an integer N. N lines follow, each line contains N integers that describe the relative board A.

Output

The first line contains Max(T). The second line contains N separated positive integers $T_1, T_2, ..., T_n$.

Score

Your score = Max(T).

Example

Input:

```
6
0 1 1 1 2 2
-2 0 1 0 2 2
-2 -1 0 3 0 1
-2 -2 3 0 1 1
-1 -2 0 -1 0 1
-1 -2 -1 -1 -1 0
```

Output:

-> Score = 4