Switch

You are given array \mathbf{A} of length \mathbf{N}, initially all values in A are set to 0 . We will make \mathbf{M} passes through array. On ith pass we will visit cells $\mathrm{B}[\mathrm{i}], 2^{*} \mathrm{~B}[\mathrm{i}], 3^{*} \mathrm{~B}[\mathrm{i}]$, and so on. In other words we visit cells that are multiples of $B[i]$. When we visit xth cell we change its value from 1 to 0 or from 0 to 1. That is if $\mathrm{A}[\mathrm{x}]$ was 1 before visit, it changes to 0 , or if it was 0 before visit it changes to 1 .

After we make all M passes, we wonder what is the sum of the array.
Constraints :
$1<=\mathrm{N}, \mathrm{M}<=100000$
$B[i]<=N$

Input

First line contains t , donating number of tests. Each test looks as follows. First line consists of 2 integers, N and M , size of array and number of passes respectively. Second line consists of M integers donating integer array B , which means that in ith pass we will visit cells that are multiples of $\mathrm{B}[\mathrm{i}]$.

Output

Ouput t lines, solution to each test case.

Example

Input:

2
53
123
55
12345

Output:

