## Tile game

Tomorrow is the Calculus exam and you are playing with squares and dominoes.
Your room-mate shouts at you: "Chief, are you not bothered?"
You: "I am already prepared. Now, let me focus on the game."
Out of curiosity, your room-mate starts looking at the game and throws you a challenge. How many ways can you tile a board of length $n$ using only dominoes and/or squares?

(In the above figure, the the yellow-colored rectangle indicates the board of length 3 . The blue rectangle is a unit square and the green rectangle is a dominoe.)

Show your room-mate that you are the Chief by writing a program that can calculate the number of tilings of a n board using only squares and dominoes.

## Input

The input starts with an integer $\mathrm{t}\left(1<=\mathrm{t}<=10^{\wedge} 5\right.$ ), the number of test cases. t lines follow. Each line contains an integer value $n$.

## Output

Corresponding to each test case, print an integer y , which is the number of ways one can tile a board of length n using squares and dominoes. It is safe to assume that y will fit into a 64-bit integer.

## Example

## Input:

3
1
3
13

## Output:

1
3
377
Explanation for Case 1: Only possible arrangement: s (s: square)
Explanation for Case 2: These are the three possible arrangements: $s+s+s$ [no dominoes, only squares], $s+d, d+s$ (s: square, d: domino).

