Longest Common Subsequence

Wersja polska

English version

For a given two words $\mathbf{x}=x 1 x 2 \ldots x_{n}$ and $\mathbf{y}=y 1 y 2 \ldots y_{m}$ find the longest common subsequence, i.e. $\mathbf{z}=z 1 z 2 \ldots z_{k}$ such that every two consecutive elements of \mathbf{z} are equal to some two elements of \mathbf{x} :
x_{a}, x_{b}, and $\mathbf{y}: y_{c}, y_{d}$ where $a<b$ and $c<d$. Assume, that elements of words are letters 'a' - 'z' and $m, n<=1000$.

Input

N [the number of series <= 1000]
$n \mathbf{x}$
$m y$

Output

case 1 Y [or N when no answer to this case]
d [the length of the Ics]
$z_{j} p q$ [position of z_{j} in \mathbf{x} and in \mathbf{y}, respectively]

Text grouped in [] does not appear in the input and output file.

Example

Input:
3
5 ddacc
3 cac
7 cbbccbc
4 aaca
4 cbeb
5 fdceb
Output:
case 1 Y
2
a 32
c 43
case 2 N
case 3 Y
3
c 13
e 34
b 45

Score

2

