Volunteers

ACM ICPC World Finals 2009, sponsored by IBM and hosted by KTH, Royal Institute of Technology will be held in Stockholm, Sweden. This contest will last for $N(1<=N<=1000)$ days. We need at least A_{i} volunteers in the i-th day. Now there are $M(1<=M<=10000)$ kind of volunteers. The i-th type of volunteers will work from S_{i}-th day to T_{i}-th day, we will pay them $\$ C_{i}$. Now your task is to minimize the money KTH pay for all the volunteers.

Input

Ten test cases(given one after another, you have to process all!). For each test case:
The first line contains two space-seperated integers N and M. The second line contains N nonnegative integers A_{i}. Mlines follow, each contains three integers S_{i}, T_{i} and C_{i}. You may assume you can hire almost unlimited number of every type of volunteers.

Tip: During your calculation, int in C/C++/Java or longint in Pascal is enough.

Output

For each test case:

Output one line with an integer - the minimum cost.

Example

Input:

33
234
122
235
332
[and 9 test cases more]

Output:

14
[and 9 test cases more]

