Volunteers

ACM ICPC World Finals 2009, sponsored by IBM and hosted by KTH, Royal Institute of Technology will be held in Stockholm, Sweden. This contest will last for $N(1 \le N \le 1000)$ days. We need at least A_i volunteers in the *i*-th day. Now there are $M(1 \le M \le 10000)$ kind of volunteers. The *i*-th type of volunteers will work from S_i -th day to T_i -th day, we will pay them C_i . Now your task is to minimize the money KTH pay for all the volunteers.

Input

Ten test cases(given one after another, you have to process all!). For each test case:

The first line contains two space-seperated integers N and M. The second line contains N nonnegative integers A_i . M lines follow, each contains three integers S_i , T_i and C_i . You may assume you can hire almost unlimited number of every type of volunteers.

Tip: During your calculation, **int** in C/C++/Java or **longint** in Pascal is enough.

Output

For each test case:

Output one line with an integer - the minimum cost.

Example

Input:

3 3 2 3 4 1 2 2 2 3 5 3 3 2 [and 9 test cases more]

Output:

14 [and 9 test cases more]