Increasing Subsequences

Given a sequence of $N(1 \leq N \leq 10,000)$ integers $S_{1}, \ldots, S_{N}\left(0 \leq S_{i}<100,000\right)$, compute the number of increasing subsequences of S with length $K(1 \leq K \leq 50$ and $K \leq N)$; that is, the number of K -tuples $\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{K}}$ such that $1 \leq \mathrm{i}_{1}<\ldots<\mathrm{i}_{\mathrm{K}} \leq \mathrm{N}$ and $\mathrm{S}_{\mathrm{i}_{1}}<\ldots<\mathrm{S}_{\mathrm{i}_{\mathrm{K}}}$.

Input

The first line contains the two integers N and K . The following N lines contain the integers of the sequence in order.

Output

Print a single integer representing the number of increasing subsequences of S of length K , modulo 5,000,000.

Example

Input:
43
1
2
2
10
Output:
2
The two 3-tuples are $(1,2,4)$ and $(1,3,4)$, both corresponding to the subsequence $1,2,10$.

