Divisor Summation Powered

Define $F(n, k)=$ Sum of $k^{t h}$ powers of all divisors of n, so for example $F(6,2)=1^{\wedge} 2+2^{\wedge} 2+3^{\wedge} 2+$ $6^{\wedge} 2=50$

Define further $G(a, b, k)$ as: Sum of $F(j, k)$ where j varies from a to b both inclusive.
Your task is to find $G(a, b, k)$ given a, b and k.
As values of G can get very large, you only need to output the value of $G(a, b, k)$ modulo $10^{\wedge} 9+7$.

Input

First line of input file contains a single integer T - denoting the number of test cases.
The follow description of T test cases. Each test case occupies exactly one line which contains three space separated integers a, b and k.

Output

Output your result for each test case in a new line.

Sample

Input:
2
221
132
Output:
3
16

Description of Sample

In case 1 , we are to find sum of divisors of 2 . which is nothing but $1+2=3$.
In case 2, we are to find sum of squares of divisors of 1,2 and 3 . So for 1 sum is $=1$. For 2 sum is $=1^{\wedge} 2+2^{\wedge} 2=5$. For 3 sum is $=1^{\wedge} 2+3^{\wedge} 2=10$. So answer is 16 .

Constraints

$1<=\mathrm{a}<=\mathrm{b}<=10^{\wedge} 5$
$1<=\mathrm{k}<=10^{\wedge} 5$
Number of test cases <= 20

