## N-Factorful

A number is called $\mathbf{n}$-factorful if it has exactly $\mathbf{n}$ distinct prime factors. Given positive integers $\mathbf{a}, \mathbf{b}$, and $\mathbf{n}$, your task is to find the number of integers between $\mathbf{a}$ and $\mathbf{b}$, inclusive, that are $\mathbf{n}$-factorful. We consider 1 to be 0 -factorful.

## Input

Your input will consist of a single integer $\mathbf{T}$ followed by a newline and $\mathbf{T}$ test cases. Each test cases consists of a single line containing integers $\mathbf{a}, \mathbf{b}$, and $\mathbf{n}$ as described above.
$T>10000$
$1 \leq \mathbf{a} \leq \boldsymbol{b} \leq 10^{6}$
$0 \leq n \leq 10$

## Output

Output for each test case one line containing the number of $\mathbf{n}$-factorful integers in $[\mathbf{a}, \mathbf{b}]$.

## Example

Input:
5
131
1102
1103
11003
110000

## Output:

2
2
0
8
1

