Con-Junctions

The city of $\mathrm{Y}-\mathrm{O}$ is a network of two-way streets and junctions with the following properties:

1. There is no more than one street between each pair of junctions.
2. Every junction is connected to every other junction either directly via a street or through other junctions by a unique path.
3. When a light is placed at a junction, all the streets meeting at this junction are also lit.

A valid lighting is a set of junctions such that if lights were placed at these, all the streets would be lit. An optimal lighting is a valid lighting such that it contains the least number of junctions.

The task is divided into two subtasks:

1. Find the number of lights in an optimal lighting.
2. Find the total number of such optimal lightings in the city.

Input

- The first line of the input contains a positive integer $\mathbf{t}<=\mathbf{2 0}$, denoting the number of test cases.
- The description of the test cases follows one after the other.
- Network Description:
- The first line of description of a network consists of a positive integer $\mathbf{n}<=\mathbf{1 0 0 0 1 0}$ denoting the number of junctions in the network.
- Each junction is numbered with a unique integer between $\mathbf{1}$ and \mathbf{n}.
- The following $\mathbf{n - 1}$ lines contain a pair of integers $\mathbf{u} \mathbf{v}(\mathbf{1}<=\mathbf{u}, \mathbf{v}<=\mathbf{n})$ separated by a single space denoting that there is a street between junction \mathbf{u} and junction \mathbf{v}.

Output

The output must consist of \mathbf{t} lines, the $\mathbf{k}^{\text {th }}$ line corresponding to the $\mathbf{k}^{\text {th }}$ network; ($1<=\mathbf{k}<=\mathbf{t}$). The $\mathbf{k}^{\text {th }}$ line must contain two integers separated by a single space. The first integer on the $\mathbf{k}^{\text {th }}$ line must be the number of junctions in an optimal lighting of network \mathbf{k}. The second integer must be $\mathbf{N} \% 10007$, which is the remainder left by the number of optimal lightings when divided by 10007.

Example

Input:

2

