Find String Roots

In mathematics, the N-th root of a number M, is a number K such that $K^{N}=M$, i.e. $K K K \ldots K=M$ where K is multiplied N times.

We can translate this into strings. In string notation, the juxtaposition is concatenation instead of multiplication. So, the N-th root of a string S is another string T such that $T^{N}=S$, where $T N=T T T$ $\ldots \mathrm{T}$ is the string T concatenated N times. For instance, if $\mathrm{S}=$ "abcabcabcabc", for $\mathrm{N}=2$ the string $\mathrm{T}=$ "abcabc" is the N -th root of S , while for $\mathrm{N}=4$ its N -th root is $\mathrm{T}=$ "abc". Note that for $\mathrm{N}=1$ any string S is the N-th root of S itself.

Given a string S you have to find the maximum N such that the N-th root of S exists. In the above example the answer would be 4, because there is no N-th root of $S=$ "abcabcabcabc" for $N>4$.

Input

The input contains several test cases, each one described in a single line. The line contains a non-empty string S of at most 10^{5} characters, entirely formed of digits and lowercase letters. The last line of the input contains a single asterisk ("*") and should not be processed as a test case.

Output

For each test case output a single line with the greatest integer N such that there exists a string T that concatenated N times is equal to S .

Example

Input:
abcabcabcabc
abcdefgh012
aaaaaaaaaa

Output:

4
1
10

