A conjecture of Paul Erdős

In number theory there is a very deep unsolved conjecture of the Hungarian Paul Erdős (19131996), that there exist infinitely many primes of the form $x^{2}+1$, where x is an integer. However, a weaker form of this conjecture has been proved: there are infinitely many primes of the form $x^{2}+y^{4}$. You don't need to prove this, it is only your task to find the number of (positive) primes not larger than n which are of the form $x^{2}+y^{4}$ (where x and y are integers).

Input

An integer T, denoting the number of testcases ($T \leq 10000$). Each of the T following lines contains a positive integer n, where $n<10000000$.

Output

Output the answer for each n.

Example

Input:
4
1
2
10
9999999

Output:

0

1
2
13175

