Minimal distance

Matt and Filip love to ride a bike. Matt is currently riding west to east at constant speed $\mathrm{V}_{\mathrm{M}}[\mathrm{m} / \mathrm{s}]$, and Filip is riding south to north at constant speed $\mathrm{V}_{\mathrm{F}}[\mathrm{m} / \mathrm{s}]$. Both of them started riding at the same time, when Matt was $D_{M}[m]$ before a crossroads and Filip was $D_{F}[m]$ past the same crossroads. Calculate the smallest distance at which Matt and Filip will be from each other during their ride.

Input

In $N(2 \leq N \leq 60000)$ lines of standard input there are four integer values $V_{M}, D_{M}, V_{F}, D_{F}\left(2 \leq V_{M}\right.$, $D_{M}, V_{F}, D_{F} \leq 100000000$) separated by spaces. In line $N+1$ there are four zeros separated by spaces. Do not process this test case.

Output

Write out N lines to standard output. For each test case, write the minimal distance between Matt and Filip in a separate line. Preserve the order of lines from the input. The relative error of your result shouldn't exceed 0.000001

Example

Input:

1728634139
121309107
313092274
381922673
295027118 0000
Output:
317.96887
163.6
239.180354
168.66674
128.156155

Scoring

For solving this problem you will score 10 points.

