Starship

You are traveling by starship and at any time you are always moving in one of 6 directions: forwards, backwards, up, down, left, or right. In other words, during every second, one of the three coordinates of your position changes by exactly one unit. Let us suppose that you are at ($\mathbf{x}_{1}, \mathbf{y}_{1}$, \mathbf{z}_{1}) and you would like to reach $\left(\mathbf{x}_{2}, \mathbf{y}_{2}, \mathbf{z}_{2}\right)$. Unfortunately, yours is only a first generation starship, which means that all movements are completely random, so at every second you will be moving with probability $1 / 6$ forwards/backwards/up/down/left/right. Could you compute the probability that we will be at the destination in the n-th second?

Input

The first line contains integer \mathbf{T}, representing the number of test cases. Each test case starts with a positive integer n, the next line gives the starting position of the starship, while the final one is the destination. It is known that: $\mathbf{T}<30000, \mathbf{0}<\mathrm{n}<=1000$. The absolute value of the $\mathbf{x}, \mathbf{y}, \mathbf{z}$ coordinates are smaller than 10^{6}. There are 5 input sets for 10 points.

Output

T lines, and in the i-th line give the required probability for the i-th test case. Use 10 digits after the decimal point!

Example

Input:
5
2
000
000
4
000
000
100
2-34
-4 56
100
2-34
-457
1000
000
000

Output:

0.1666666667
0.0694444444
0.0001389381
0.0000000000
0.0000208505

