Check Ramsey

From Ramsey theorem we know that for every *k*, *l* pair there exists an integer: R(k, l) for that if $n \ge R(k, l)$, then if you color the edges of a complete graph on *n* vertices with red and blue then it contains a complete subgraph on *k* vertices whose edges are blue or a complete subgraph on *l* vertices whose edges are red. To get an impression of the theorem you have to count the number of complete subgraphs having *k* nodes with blue edges - K(k) and the number of complete subgraphs having *l* nodes with red edges - K(l) for each edge coloring.

To make the problem somewhat easier (or harder?) for each test the probability that an edge is red (or blue) is close to 1/2. This means that on *n* vertices you will see about n(n-1)/4 red edges.

Input

The first line contains the number of test cases *T*, where *T* <= 100. After it there is a blank line and also after every test. Each test starts with four integers *n*, *k*, *l*, *e* in this order, where $3 \le k \le l \le n \le 100$, here *e* is the number of red edges (we are not interested in very large monochromatic complete subgraphs, so you can assume that *k*, *l* <= 10 is also true). Then follow *e* lines, each of them gives two integers: *x*, *y*, it means that there is a red edge between points $0 \le x$, $y \le n$. All other edges are blue.

Output

For each test print the case number then the count of blue K(k) and red K(l) for the edge coloring.

Example

Ir З	np	ut.	:		
5 0 1 2 3 4	3 1 2 3 4 0	3	5		
6 0 1 2 3 4 5	3 1 2 3 4 5 0	3	6		
8 0 0 0 1	3 1 2 3 4 2	4	7		

13 23

Output:

Case #1:

The number of blue K(3) is 0 and the number of red K(3) is 0. Case #2:

The number of blue K(3) is 2 and the number of red K(3) is 0. Case #3:

The number of blue K(3) is 25 and the number of red K(4) is 1.