Count the numbers!

For given integers **a** and **b** your task is to find how many integers in the range **[a,b]** are divisible by a number **x**, and have the additional property that the sum of their digits lies in the range **[l,r]** for given **l,r**.

Input

In the first line you're given **a** and **b** ($1 \le a \le b \le 10^{100}$). In the second line you're given three positive integers **x** ($1 \le x \le 10$), **I**, **r** ($1 \le t \le r \le 1,000$).

Output

In the first and only line output the result modulo 1,000,000,007.

Example

Output:

Scoring

By solving this problem you score 10 points.