## Count the numbers!

For given integers $\mathbf{a}$ and $\mathbf{b}$ your task is to find how many integers in the range [a,b] are divisible by a number $\mathbf{x}$, and have the additional property that the sum of their digits lies in the range $[1, r]$ for given I,r.

## Input

In the first line you're given $\mathbf{a}$ and $\mathbf{b}$ ( $1<=\mathbf{a}<=\mathbf{b}<10^{\wedge} 100$ ).
In the second line you're given three positive integers $\mathbf{x}(1<=\mathbf{x}<=10), \mathbf{I}, \mathbf{r}(1<=\mathbf{I}<=\mathbf{r}<=1,000$ ).

## Output

In the first and only line output the result modulo $1,000,000,007$.

## Example

Input:
1100
51050
Output:
5

## Scoring

By solving this problem you score 10 points.

