Multinomial numbers

You may perhaps know how to find the last nonzero digit of n factorial. This time your task is harder, find the last nonzero decimal digit of the multinomial coefficient:
$\left(a_{1}+a_{2}+\ldots+a_{n}\right)!/\left(a_{1}!^{*} a_{2}!^{*} \ldots{ }^{*} a_{n}!\right)$. Note that this is an extension of the classical problem, since factorials (and binomial numbers) are also multinomial numbers!

Input

An integer T, denoting the number of testcases ($T \leq 10000$). In each line you are given one positive integer ($n \leq 20$), followed by n integers: $a_{1}, a_{2}, \ldots, a_{n}$, where $0 \leq a_{i} \leq 1000000000$. There are 4 input sets for 10 points.

Output

Output T lines, the case number followed by the last nonzero decimal digit. See the sample output for the correct format!

Example

Input:

7
10
2119
45729
3100030002000
3100000000200000000300000000
249
811474892

Output:

Case 1: 1
Case 2: 6
Case 3: 8
Case 4: 6
Case 5: 2
Case 6: 5
Case 7: 4
Warning: A naive algorithm will probably solve only the first two input sets.

