Strange Sequence

Given integers: $r(1<r<100)$ and s we define a sequence $X(r, s)$ in such a way that $X(r, s)_{0}=s$ and $X(r, s)_{i+1}$ is equal to $X(r, s)_{i}$ plus the sum of digits of $X(r, s)_{i}$ when expressed in the standard base-r positional system.

Task: given $r, s<M<100000$ find out how many elements of $X(r, s)$ are required to reach M, that is, find the smallest i such that $X(r, s)_{i}$ is precisely equal to M.

Input

In the first line you are given three decimal integers: r, M, n, where $n<100000$ is the number of test cases. In each of the following n lines you are given one decimal, nonnegative integer specific for a given test case.

Output

For each of the test cases output in the separate line the one requested number in decimal format or -1 if such a number does not exist.

Example 1

Input:

2103
7
3
8
Output:
1
3
-1

Explanation:

7 (Dec) $=111$ (Bin)
The sum of digits of 111 (Bin) is 3 (Dec)
$7+3=10$ (Dec)
10 has been reached in one step.
3 (Dec) $=11$ (Bin)
The successive elements are (Dec): 5, 7, 10 (3 steps)
$8(\mathrm{Dec})=1000(\mathrm{Bin})$
The successive elements are (Dec): $9,11, \ldots$
$10(\mathrm{Dec})$ will not be reached.

Example 2

Input:
2112343
3
8

Output:

-1
-1
1

Scoring

By solving this problem you score 10 points.

