Multiply Matrixs

Multiplying a matrix of size $m \times n$ by an matrix of $n \times p$, the number of multiplications to use is m.n.p.

On the other hand, multiplication of matrices is coherent, that is: (A.B) $. C=A$. (B.C). Therefore in different sequences, each determines the number of multiplications to use.

Given N matrices $\mathrm{A} 1, \mathrm{~A} 2 \ldots$ An, the size of A _i matrix is $\mathrm{d} _(\mathrm{i}-1) \times$ di. Determine the minimal multiplication to using for multiplying n matrixs A1, A2 ... An .

Input

The first line contains a positive integer $n ; 1<=n<=100$.
The second line contains $n+1$ integers d0, $d 1, d 2, \ldots, d n ; 2<=d _i<=100$

Output
A single integer is the least number of multiplications to use.

Example

Input:

6

3334223

Output

90

