Multiply Matrixs

Multiplying a matrix of size m × n by an matrix of n × p, the number of multiplications to use is m.n.p.

On the other hand, multiplication of matrices is coherent, that is: (A.B) . C = A. (B.C). Therefore in different sequences, each determines the number of multiplications to use.

Given N matrices A1, A2 ... An, the size of A_i matrix is $d_{(i - 1) \times di}$. Determine the minimal multiplication to using for multiplying n matrixs A1, A2 ... An .

Input

The first line contains a positive integer n; $1 \le n \le 100$.

The second line contains n + 1 integers d0, d1, d2, ..., dn; $2 \le d_i \le 100$

Output

A single integer is the least number of multiplications to use.

Example

Input:

6

3334223

Output

90