String Distance

Let $A=a_{1} a_{2} \ldots a_{k}$ and $B=b_{1} b_{2} \ldots b_{1}$ be strings of lengths k and I, respectively. The string distance between A and B is defined in the following way ($d[i, j]$ is the distance of substrings $a_{1} \ldots a_{i}$ and $\mathrm{b}_{1} \ldots \mathrm{~b}_{\mathrm{j}}$, where $0 \leq \mathrm{i} \leq \mathrm{k}$ and $0 \leq \mathrm{j} \leq \mathrm{I}-\mathrm{i}$ or j being 0 represents the empty substring). The definition for $d[i, j]$ is $d[0,0]=0$ and for $(i, j) \neq(0,0) d[i, j]$ is the minimum of all that apply:

- $d[i, j-1]+1, i f j>0$
- $d[i-1, j]+1, i f i>0$
- $d[i-1, j-1]$, if $i>0, j>0$, and $a_{i}=b_{j}$
- $d[i-1, j-1]+1$, if $i>0, j>0$, and $a_{i} \neq b_{j}$
- $d[i-2, j-2]+1$, if $i \geq 2, j \geq 2, a_{i}=b_{j-1}$, and $a_{i-1}=b_{j}$

The distance between A and B is equal to $d[k, l]$.
For two given strings A and B, compute their distance knowing that it is not higher than 100 .

Input

In the first line, k and I are given, giving the lengths of the strings A and $B\left(1 \leq k, I \leq 10^{5}\right)$. In the second and third lines strings A and B, respectively, are given. A and B contain only lowercase letters of the English alphabet.

Output

In the first line, write one number, the distance between A and B, followed by a newline.

Example

Input:

88
computer
kmpjutre

Output:

4

