IOI05 Mean Sequence

Consider a nondecreasing sequence of integers s_1, \ldots, s_{n+1} ($s_i \le s_{i+1}$ for $1 \le i \le n$). The sequence m_1, \ldots, m_n defined by $m_i = 1/2$ ($s_i + s_{i+1}$), for $1 \le i \le n$, is called the mean sequence of sequence s_1, \ldots, s_{n+1} . For example, the mean sequence of sequence 1, 2, 2, 4 is the sequence 1.5, 2, 3. Note that elements of the mean sequence can be fractions. However, this task deals with mean sequences whose elements are integers only.

Given a nondecreasing sequence of n integers m_1, \ldots, m_n , compute the number of nondecreasing sequences of n+ 1 integers s_1, \ldots, s_{n+1} that have the given sequence m_1, \ldots, m_n as mean sequence.

Task

Write a program that:

- reads from the standard input a nondecreasing sequence of integers,
- calculates the number of nondecreasing sequences, for which the given sequence is mean sequence,
- writes the answer to the standard output.

Input

The first line of the standard input contains one integer n ($2 \le n \le 5\,000\,000$). The remaining n lines contain the sequence m_1,\ldots,m_n . Line i+ 1 contains a single integer m_i ($0 \le m_i \le 1\,000\,000\,000$). You can assume that in 50% of the test cases $n \le 1\,000\,$ and $0 \le m_i \,6\,20\,000$.

Output

Your program should write to the standard output exactly one integer — the number of nondecreasing integer sequences, that have the input sequence as the mean sequence.

Example

```
For the input data:
3
2
5
9
the correct result is:
4
```

Indeed, there are four nondecreasing integer sequences for which 2 ,5 ,9 is the mean sequence. These sequences are:

- 2,2,8,10,
- 1,3,7,11,
- 0,4,6,12,
- -1,5,5,13.

Note: For now there are only 17 not very big test cases, remaining ones will be added in a month, all submissions will be rejudged.	