IOI05 Mean Sequence

Consider a nondecreasing sequence of integers $s_{1}, \ldots, s_{n+1}\left(s_{i} \leq s_{i+1}\right.$ for $\left.1 \leq i \leq n\right)$. The sequence m_{1}, \ldots, m_{n} defined by $m_{i}=1 / 2\left(s_{i}+s_{i+1}\right)$, for $1 \leq i \leq n$, is called the mean sequence of sequence s_{1}, \ldots, s_{n+1}. For example, the mean sequence of sequence $1,2,2,4$ is the sequence $1.5,2,3$. Note that elements of the mean sequence can be fractions. However, this task deals with mean sequences whose elements are integers only.

Given a nondecreasing sequence of n integers m_{1}, \ldots, m_{n}, compute the number of nondecreasing sequences of $n+1$ integers s_{1}, \ldots, s_{n+1} that have the given sequence m_{1}, \ldots, m_{n} as mean sequence.

Task

Write a program that:

- reads from the standard input a nondecreasing sequence of integers,
- calculates the number of nondecreasing sequences, for which the given sequence is mean sequence,
- writes the answer to the standard output.

Input

The first line of the standard input contains one integer $n(2 \leq n \leq 5000000)$. The remaining n lines contain the sequence m_{1}, \ldots, m_{n}. Line $i+1$ contains a single integer $m_{i}\left(0 \leq m_{i} \leq 1000000\right.$ 000). You can assume that in 50% of the test cases $n \leq 1000$ and $0 \leq m_{i} 620000$.

Output

Your program should write to the standard output exactly one integer - the number of nondecreasing integer sequences, that have the input sequence as the mean sequence.

Example

For the input data:

3
2
5
9
the correct result is:
4
Indeed, there are four nondecreasing integer sequences for which $2,5,9$ is the mean sequence. These sequences are:

- 2 ,2 ,8,10,
- 1 ,3,7,11,
- $0,4,6,12$,
- - $1,5,5,13$.

Note: For now there are only 17 not very big test cases, remaining ones will be added in a month, all submissions will be rejudged.

