Bases

What do you get if you multiply 6 by 9 ? The answer, of course, is 42 , but only if you do the calculations in base 13.

Given an integer $B \geq 2$, the base B numbering system is a manner of writing integers using only digits between 0 and $B-1$, inclusive. In a number written in base B, the rightmost digit has its value multiplied by 1 , the second rightmost digit has its value multiplied by B, the third rightmost digit has its value multiplied by B^{2}, and so on.

Some equations are true or false depending on the base they are considered in. The equation $2+2=4$, for instance, is true for any $B \geq 5$ - it does not hold in base 4 , for instance, since there is no digit '4' in base 4. On the other hand, an equation like $2+2=5$ is never true.

Write a program that given an equation determines for which bases it holds.

Input

Each line of the input contains a test case; each test case is an equation of the form "EXPR=EXPR", where both "EXPR" are arithmetic expressions with at most 17 characters.

All expressions are valid, and contain only the characters ' + ', '*' and the digits from ' 0 ' to ' 9 '. No expressions contain leading plus signs, and no numbers in it have leading zeros.

The end of input is indicated by a line containing only "=".

Output

For each test case in the input your program should produce a single line in the output, indicating for which bases the given equation holds.

If the expression is true for infinitely many bases, print " $B+$ ", where B is the first base for which the equation holds.

If the expression is valid only for a finite set of bases, print them in ascending order, separated by single spaces.

If the expression is not true in any base, print the character '*'.

Example

```
Input:
6*9=42
10000+3*5*334=3*5000+10+0
2+2=3
2+2=4
0* 0=0
=
```

$5+$
2+

