Comet Number

A positive integer \mathbf{X} is a comet number if there exists 5 positive integers $\mathbf{A} \mathbf{B C D} \mathbf{D}$ such that:

- $A+B+C+D=X$
- $\mathbf{A}+\mathbf{E}, \mathbf{B}-\mathbf{E}, \mathbf{C}^{*} \mathbf{E}$, and \mathbf{D} / \mathbf{E} are pairwise equal, meaning $\mathbf{A}+\mathbf{E}=\mathbf{B}-\mathbf{E}=\mathbf{C}$ * $\mathbf{E}=\mathbf{D} / \mathbf{E}$ Kanata gave Suisei \mathbf{N} positive integers $\mathbf{A}_{\mathbf{i}}$ for $\mathbf{1} \leq \mathbf{i} \leq \mathbf{N}$.

Suisei would like to know whether $\mathbf{A}_{\boldsymbol{i}}$ is a comet number or not.

Input Format

The first line contains an integer \mathbf{N}.

The next \mathbf{N} lines contain an integer $\mathbf{A}_{\mathbf{i}}$

Output Format

Print \mathbf{N} lines.

The \mathbf{i}-th line contains the string "YES" (without quotes) if $\mathbf{A}_{\boldsymbol{i}}$ is a comet number and "NO" (without quotes) otherwise.

Sample Input

4

Sample Output

YES
NO
NO
YES

Explanation

8 is a comet number as there exists a valid quintuple $(A, B, C, D, E)=(\mathbf{1 , 3}, \mathbf{2}, \mathbf{2}, \mathbf{1})$.
128 is a comet number as there exists a valid quintuple $(A, B, C, D, E)=(31,33,32,32,1)$.

Constraints

$1 \leq N, A_{i} \leq 10^{5}$

