AB-words

Every sequence of small letters a and b (also the empty sequence) is called an ab-word. If $X=$ [$\left.x_{1}, \ldots, x_{n}\right]$ is an ab-word and i, j are integers such that $1<=i<=j<=n$ then $X[i . . j]$ denotes the subword of X consisting of the letters x_{i}, \ldots, x_{j}. We say that an ab-word $X=\left[x_{1} . . x_{n}\right]$ is nice if it has as many letters a as b and for all $i=1, \ldots, n$ the subword $X[1 . . i]$ has at least as many letters a as b .

Now, we give the inductive definition of the similarity between nice ab-words.

- Every two empty ab-words (i.e. words with no letters) are similar
- Two non-empty nice ab-words $X=\left[x_{1}, \ldots, x_{n}\right]$ and $Y=\left[y_{1}, \ldots, y_{m}\right]$ are similar if they have the same length $(n=m)$ and one of the following conditions if fulfilled:

1. $x_{1}=y_{1}, x_{n}=y_{n}$ and $X[2 . . n-1]$ and $Y[2 . . n-1]$ are similar ab-words and they are both nice;
2. there exists $i, 1<=i<=n$, such that $X[1 . . i], X[i+1 . . n]$ are nice ab-words and
a. $Y[1 . . i], Y[i+1 . . n]$ are nice ab-words and $X[1 . . i]$ is similar to $Y[1 . . i]$ and $X[i+1 . . n]$ is similar to $Y[i+1 . . n]$, or
b. $Y[1 . . n-i], Y[n-i+1 . . n]$ are nice ab-words and $X[1 . . i]$ is similar to $Y[n-i+1 . . n]$ and $X[i+1 . . n]$ is similar to $Y[1 . . n-1]$.

A level of diversity of a non-empty set S of nice ab-words is the maximal number of ab-words that can be chosen from S in such a way that for each pair w_{1}, w_{2} of chosen words, w_{1} is not similar to w_{2}.

Task

Write a program that for each test case:

- reads elements of S from standard input;
- computes the level of diversity of the set S;
- writes the result to standard output.

Input

The number of test cases t is in the first line of input, then t test cases follow separated by an empty line.

In the first line of a test case there is a number n of elements of the set $S, 1<=n<=1000$; in the following n lines there are elements of the set S, i.e. nice ab-words (one word in each line); the first letter of every ab-word is the first symbol in line and there are no spaces between two consecutive letters in the word; the length of every ab-word is an integer from the range [1..200].

Output

For each test case your program should output one line with one integer - the level of diversity of S.

Example

Sample input:

1
3
aabaabbbab
abababaabb
abaaabbabb

Sample output:
2

